For EU future energy security

II

 

Following the crises between Ukraine and Russia, energy security has become high on the EU political agenda. In fact, since the EU is more than 65% dependent on Russian gas, it has no choice other than to rethink its energy supply and distribution systems. Knowing that only around 25% of the gas we consumed in Europe goes to electricity production and the rest to heating (41% for heating of buildings and 31% for industrial processes), the EU gas security crisis is in fact a heating crisis.

A significant part of our energy imports comes from unstable regions, threatening the stability and security of the EU’s supplies. The uncertainties over the current crisis in Ukraine show once again the limits of EU’s energy dependency. According to Eurostat, about one third of the EU’s total crude oil (34.5%) and natural gas (32%) imports in 2012 originated from Russia. These supplies appear to be less and less stable and secure, forcing the EU to think a new strategy for its future energy security.

According to Eurostat, nuclear energy represents in 2012 28.1% of the EU’s “primary energy production” (227.7 Mtoe), giving a misleading impression that nuclear is an indigenous fuel. In fact, the EU is largely dependent on external uranium supply, mostly from mines in Canada, Australia and Kazakhstan. It is important to realize that nuclear energy is keeping the EU dependent on external supplies when too often it is considered as a European primary energy (unfortunately, Eurostat includes nuclear energy in its “primary energy production” statistics). This dependency contributes not only to the weakening of the EU’s geopolitical influence on the international arena, but also to the fueling of dramatic GDP-leakage, with the EU spending more than € 1 billion per day on importing fossil fuels, or around 4 % of its annual GDP.

Solid biomass imports represent today only around 2-3% of the EU’s gross inland consumption of biomass for heating and electricity. These imports are minor today and will remain marginal compared to fossil fuels imports. They also come from geopolitically stable countries such as the United States and Canada. In addition, imports of biomass to the EU are already today subject to sustainability criteria (national sustainability schemes for solid biomass in NL, UK, DK, BE and private initiatives such as the Sustainable Biomass Partnership (SBP) scheme) and will be increasingly so in the future with an upcoming EU-wide sustainability criteria scheme announced by the European Commission in its communication on the Energy Union. This ensures the sustainability of increased biomass demand.

Biomass as a solution to reduce EU energy dependency

Biomass has a significant role as part of the solution to reduce energy dependency. By encouraging a switch to renewable sources of energy, including biomass, in its energy security strategy, the EU will not only alleviate its external dependency and therefore improve its geopolitical situation, but it will also invest in a European SME based sector, creating growth and jobs in the EU, while decarbonizing its economy.

Biomass potential

European forests are currently underutilized, as volume growth is significantly higher than utilization which can be seen in the graph below. In Europe, we are harvesting only 62% of annual forest growth. Every year, the wood stock in forest is increasing by almost 300 million m3.

The current and future biomass potential for energy use has been evaluated by numerous studies, at the EU and national levels. Different potentials have been concluded, depending on the initial assumptions, the approach, the methodology used and considered constraints. The methodologies for biomass resource assessments were compared in the Biomass Energy Europe (BEE) project which was financed by the European Commission. The graph below summarizes the potential of biomass (forestry and forestry residues, agricultural residues, organic waste).

Increment and fellings in forest available for wood supply

The green diamond in the graph shows the actual gross inland energy consumption of biomass in 2012, compared to the range of potentials evaluated. It clearly shows that the current use of biomass is below all evaluated potentials, even the most stringent ones. This is foreseen to remain the same in the future.

graphsjpg

Counterintuitively, higher wood demand increases forest wood stock, as the owners see a higher value in wood, thereby managing forests more actively. More active forest management leads to increased volume increment as planting and thinnings are taken care of. Additionally, a stronger forest industry which creates sawn wood products and paper increases the biomass available for energy. Harvesting residues (branches and tree tops), small diameter wood, saw dust, wood shavings, bark and black liquor are among the by-products of the traditional paper and saw milling industries which can be used as bioenergy feedstocks.

Technologies available

Readily available renewable energy solutions, combined with energy ef­ficiency measures, are a quick, practical and versatile option to alleviate fossil fuels dependency. Biomass offers the possibility to replace every type of fossil fuel within every market: electricity, heating and cooling, and transport. Biomass represents today 9.25% of the total ­nal energy consumption in Europe and 62.4% of the renewable energy consumed (Eurostat data for 2012).

Biomass for Heat: Of all possible renewable heating options, biomass has a great potential to deliver signi­cant and cost-effective solutions to a concerning heat demand. Wood pellets, wood chips, briquettes, wood logs, and straw can be used for biomass heating, by using stoves or boilers.

Biomass for Electricity: Biomass can be used to produce electricity for the grid or for self-consumption in industrial processes. It can be implemented in dedicated biomass power plants or through co-­ring with fossil fuels. Dedicated biomass plants are plants speci­cally designed or converted to use biomass as fuel. They often use low cost fuels such as wood chips and, in some cases, agricultural by-products such as straw. Co-­ring offers a possibility to produce large amounts of renewable electricity using existing power facilities. In the case of pulverized coal plants, high quality wood fuels such as pellets are used. Pellets are milled to powder and burned with coal in existing conventional power plants. In some recent cases co-­ring plants have been converted to use 100% biomass.

By achieving the targets for renewables in heating and cooling (21.4% in 2020), the EU could reduce its gas imports by the equivalent of 28.7 Mtoe annually in 2020. With current average import prices, this would save the EU some € 9.6 bn. However, with more ambitious policies, it would be possible to cover 25% of the total heat demand by the end of this decade. The annual savings in reduced fossil fuel imports would amount to as much as € 21.8 bn compared to 2012. Instead of being paid to third countries, these amounts would be reinvested in EU industries developing technologies able to use indigenous and renewable sources of heating, such as biomass.

 Download the factsheet here.